
Mapping Algorithms to the Network Topology
in a Portable Manner

Dave Turner

In collaboration with:
Bin Tong, Ashraf Hamad, Masha Sosonkina

Funded by the Mathematical, Information, and Computational Sciences (MICS)
division of the Department of Energy Office of Science

Outline

• The importance of mapping to the network topology
– The topology of the IBM SP at NERSC
– On-node and off-node performance measurements
– The Ames Laboratory Classical Molecular Dynamics code
– Performance on the IBM SP with and without mapping

• 2D and 3D decomposition of applications
• Taking advantage of the network topology

– The goals of the NodeMap project
– Automatically mapping 2D decompositions onto the network
– Examples of NodeMap modules

The IBM SP at NERSC

• 416 16-way SMP nodes connected by an SP switch
• 380 IBM Nighthawk compute nodesà 6080 compute processors

– 16-way SMP node
– 375 MHz Power3+ processors

• 4 Flops / cycle à peak of 1500 MFlops/processor
• ALCMD gets around 150 MFlops/processor

– 16 GB RAM / node (some 32 & 64 GB nodes)
• Limited to 2 GB / process

– AIX with MPI or OpenMP

• IBM Colony switch connecting the SMP nodes
– 2 network adaptors per node
– MPI

http://hpcf.nersc.gov/computers/SP/

SMP message-passing performance
on an IBM SP node

The aggregate bi-directional bandwidth
is 4500 Mbps between one pair of
processes on the same SMP node with a
latency of 14 us.

The bandwidth scales ideally for two
pairs communicating simultaneously.

Efficiency drops 80% when 4 pairs are
communicating, saturating the main
memory bandwidth on the node.

Communication bound codes will suffer
when run on all 16 processors due to
this saturation. 0

5000

10000

15000

20000

100 10,000 1,000,000
Message size in Bytes

Th
ro

ug
hp

ut
 in

 M
bp

s

4 processes
(2 pairs)

2 processes
(1 pair)

8 processes
(4 pairs)

16 processes
(8 pairs)

Bi-directional performance
16-way IBM SP node
Latency ~ 14 us

Message-passing performance
between IBM SP nodes

The aggregate bi-directional
bandwidth is 3 Gbps between one
pair of processes between nodes
with a latency of 23 us.

The bandwidth scales ideally for two
pairs communicating
simultaneously, which makes sense
given that there are two network
adapter cards per node.

Efficiency drops 70% when 4 pairs
are communicating, just about
saturating the off-node
communication bandwidth.

Communication bound codes will
suffer when run on more than 4
processors due to this saturation.

0

5000

10000

100 10,000 1,000,000
Message size in Bytes

Th
ro

ug
hp

ut
 in

 M
bp

s

4 processes
(2 pairs)

2 processes
(1 pair)

8 processes
(4 pairs)

16 processes
(8 pairs)

Bi-directional performance
between IBM SP nodes
Latency ~ 23 us

32 processes
(16 pairs)

Rendezvous
threshold

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

2D decomposition of the 3D simulation space

Map neighboring regions to neighboring nodes
to localize communications.

Shift coordinates and accumulators to all
nodes above and to the right to calculate all
pair interactions within the cutoff range.

Large systems require just 5 communications,
while systems spread across more nodes
may involve many more passes in a
serpentine fashion around half the interaction
range.

Ames Lab Classical Molecular Dynamics code

Embedded atom method, Leonard Jones, Tersoff potentials

Uses cubic spline functions for optimal performance

Local interactions only, typically 5-6 Αà 50-60 neighbors per atom

ALCMD scaling on the IBM SP

Number of Processors

S
p

ee
d

u
p

1 Million atoms

100,000 atoms

Ideal Speedup

10 Million atoms

10,000 atoms

102425664

1024

256

CMD scaling
on the

IBM SP
16-way SMPs
CMD scaling

column mapping

column mapping

column mapping

Proper mapping of the columns
to SMP nodes helps greatly.

Parallel efficiency goes from
50% to 70% for 10,000,000
atoms on 1024 processors.

Scaling beyond 1024
processors will be difficult.

On-node and off-node
communications are saturated
even at 1024 processors
(16 x 16-way SMPs)

2D decomposition of algorithms

• Many codes can be naturally decomposed onto a 2D mesh.
– Atomistic codes: Classical and Order-N Tight-Binding
– Many matrix operations
– Finite difference and finite element codes
– Grid and multi-grid approaches

• 2D decompositions map well to most network topologies.
– 2D and 3D meshes and toruses, hypercubes, trees, fat trees
– Direct connections to nearest neighbor nodes prevents contention

• Writing algorithms using a 2D decomposition can provide
the initial step to taking advantage of the network topology.

NodeMapNodeMap

Most applications do not take advantage of the network topology

à There are many different topologies, which can even vary at run-time

à Schedulers usually do not allow requests for a given topology

à no portable method for mapping to the topology

è loss of performance and scalability

NodeMap will automatically determine the network topology at run-time

and pass the information to the message-passing library.

NodeMapNodeMap
Network modules identify the

topology using a variety of
discovery techniques.

Hosts and switches are stored
from nearest neighbors out.

Topology analysis routines
identify regular topologies.

Latency, maximum and aggregate
bandwidth tests provide more
accurate performance measurements.

The best mapping is provided
through the MPI_Init or
MPI_Cart_create functions.

Ethernet
TCP/IP

NodeMapNodeMap

Performance data

Myrinet
GM InfiniBand

Topology
Analysis
Routines

MapperMapper

SMP MPP
custom networks

Neighbor-based
data structure Point-to-Point

Latency and
Bandwidth

Aggregate
Bandwidth

MPI_Cart_create()
MPI_Init()

GraphicalGraphical
back endback end

NodeMap network modules

Run-time use of NodeMap means it must operate very quickly (seconds, not minutes).

— Use brute force ping-pong measurements as a last resort.

Reduce the complexity of the problem at each stage.

— Always identify SMP processes first using gethostname.

— Identify each node’s nearest neighbors, then work outwards.

Store the neighbor and switch information in the manner it is discovered.

— Store local neighbors, then 2nd neighbors, etc.

This data structure based on discovery makes it easy to write the topology analysis routines.

The network type or types should be known from the MPI configuration.

— This identifies which network modules to run.

— The MPI configuration provides paths to the native software libraries.

Myrinet – static.map file

Parse the gm/sbin/static.map file

Each host has an entry

-- Connected to what switch?

Each switch has an entry

-- Lists all hosts connected

-- Lists all switches connected

Internal switches have no hosts

Determine the complete topology

Determine our topology

s - "s0"
15
0 s - "s1" 14
1 s - "s2" 14
2 s - "s3" 14
3 s - "s4" 14
4 s - "s5" 14
5 s - "s6" 14
6 s - "s7" 14
7 s - "s8" 14
9 h - "a18" 0
10 h - "a19" 0
11 h - "4pack" 0
12 h - "m22" 0
13 h - "m19" 0
14 h - "m18" 0
15 h - "m20" 0

s - "s1"
8
0 s - "s9" 0
1 s - "s10" 0
6 s - "s11" 0
11 s - "s12" 0
12 s - "s13" 0
13 s - "s14" 0
14 s - "s0" 0
15 s - "s15" 0

h - "m22"
1
0 s - "s0" 12
number 0
address
0060dd7fb1f9
gmId 78
hostType 0

h - "m27"
1
0 s - "s14" 14
number 0
address
0060dd7fb0e8
gmId 62
hostType 0

S0 S9 S10 S11 S12 S13 S14 S15

S1 S2 S3 S4 S5 S6 S7 S8

Fat Tree

Myrinet module for NodeMap

4pack> gm_board_info
lanai_cpu_version = 0x0900 (LANai9.0)
max_lanai_speed = 134 MHz
(should be labeled: "M3M-PCI64B-2-59521")

gmID MAC Address gmName Route
---- ----------------- ---------- -------------

2 00:60:dd:7f:b1:c0 m26 ba bd 88
3 00:60:dd:7f:b0:e0 m18 83
4 00:60:dd:7f:b1:f6 m29 ba b3 89
55 00:60:dd:7f:ac:b2 m25 ba b2 88
56 00:60:dd:7f:b0:ec m24 ba bf 86
58 00:60:dd:7f:b1:06 m20 84
59 00:60:dd:7f:b0:e3 m19 82
61 00:60:dd:7f:b1:bd m28 ba be 86
62 00:60:dd:7f:b0:e8 m27 ba bf 89
67 00:60:dd:7f:ac:a8 m23 ba be 89
77 00:60:dd:7f:ac:b0 4pack 80 (this node)
78 00:60:dd:7f:b1:f9 m22 ba be 88
80 00:60:dd:7f:b0:ed m32 ba b3 88
93 00:60:dd:7f:b0:e1 m31 ba be 87

Probe using gm_board_info.

Use header info to ID board.

Verify clock rate with dmesg

Provides exact routing

- Not really needed

Measure the latency and bandwidth

Provide the best mapping

InfiniBand module for NodeMap

Probe the subnet manager
(minism or other)

Identify my LID

Exchange LIDs

Parse and store the links,
switches, and other HCAs

This is all that is needed to
determine the topology

opteron1:~> minism InfiniHost0
minism>d

New Discovered Node
New Node - Type:CA NumPorts:02 LID:0003
New Discovered Node
New Link 4x FromLID:0003 FromPort:01 ToLID:0004 ToPort:08

New Node - Type:Sw NumPorts:08 LID:0004
No Link 1x FromLID:0004 FromPort:01
No Link 1x FromLID:0004 FromPort:02
No Link 1x FromLID:0004 FromPort:03
No Link 1x FromLID:0004 FromPort:04

New Discovered Node
New Link 4x FromLID:0004 FromPort:05 ToLID:0002 ToPort:06
New Link 4x FromLID:0004 FromPort:06 ToLID:0002 ToPort:05
New Link 4x FromLID:0004 FromPort:07 ToLID:0009 ToPort:01
New Link 4x FromLID:0004 FromPort:08 ToLID:0003 ToPort:01

New Discovered Node
New Node - Type:CA NumPorts:02 LID:0009
New Link 4x FromLID:0009 FromPort:01 ToLID:0004 ToPort:07

IP module for NodeMap
IP interface can be to many types of network hardware.

+ Ethernet, ATM, IP over Myrinet, IP over InfiniBand, etc.

How to determine what network cards are present?

+ ifconfig provides a list of active interfaces

+ Does tell what type of network

~ May tell what speed for Ethernet

+ lspci, hinv provide a description of what is plugged into the PCI slots

~ Sometimes helpful, but may require a database

Can measuring latency identify the number of switches in between?

- This may require many point-to-point measurements

- OS, driver, and NIC can affect the latency themselves

+ It may identify which nodes are on a local switch

? Can simultaneous measurements be done to make this efficient?

Use aggregate measurements to probe higher level switches?

MPP modules for NodeMap

Use uname or compiler definitions to identify the MPP type

-- _CRAYT3E is defined for the Cray T3E

-- _AIX for IBM SP (anything better?)

à These identify the global network topology

Use gethostname to identify SMP processes

àThis reduces the complexity of the problem

Use vendor functions if available (getphysnode on the Cray T3E)

Do we need a module for each new type of MPP???

A Generic MPI Module
How quickly can a brute force analysis be done?

Run NodeMap once to generate a static map file of the topology?

Identify SMP processes first using gethostname

Gather information for a single host

— Measure the latency and maximum throughput to one or more nodes

Probe using overlapping pair-wise bandwidth measurements

— Try to measure the congestion factor

— Increase the number of pairs until the performance improves è X-dimension

— Repeat in the Y-dimension

— Use 2D global shifts for several regular arrangements

Measure the bi-sectional bandwidth è Can identify fat trees

Additional tricks needed!!!

n0 n1 n2 n3

Topological Analysis Routines

Initially concentrate only on regular arrangements

+ N-dimensional mesh/torus, trees, SMP nodes

Identify the topology from the host/switch information gathered

+ How many unique 1st, 2nd, 3rd, … neighbors è mesh/torus

+ Determine whether a tree is fully connected

Eventually handle more irregular arrangements of nodes.

+ Identify the general type of network

- May have an irregular arrangement of nodes on a mesh/torus

+ Identify which nodes are irregular

Performance Measurements

Performance may be limited by many factors

+ Measure latency and max bandwidth for each network layer

+ Measure aggregate performance across switches or a given link

Performance data can help determine the topology

+ A tree with fewer internal switches may still be a fat tree

Feed the performance data to the Mapper along with topological data

The Mapper

NodeMap will initially be run from MPI_Cart_create(…, reorder=1)

+ User must determine which direction requires the optimal passing

The Mapper will take the topology and performance data and provide the best
mapping of the desired 2D (or eventually 3D or tree) algorithm.

+ Concentrate on regular arrangements first

+ Use Gray codes for 2D onto N-dimensional topologies to guarantee
nearest neighbors are directly connect

NodeMap may also be run from MPI_Init()

+ Provide optimal mappings for global operations (mainly binary trees)

Conclusions
• Codes must be mapped to the network topology to scale well
• Many codes can use a 2D decomposition

+ 2D algorithms can be mapped ideally to most network topologies

• NodeMap will provide automatic mapping to the topology
èPortable means of taking advantage of the network topology

Questions
• How well will NodeMap handle irregular networks?

– Will it be difficult to provide a reasonable mapping?

• Can a generic MPI module effectively discover a topology?
– If so, how quickly can this be done?
– Will NodeMap need to generate static map files ahead of time?

Contact information

Dave Turner - turner@ameslab.gov

http://www.scl.ameslab.gov/Projects/NodeMap/
http://www.scl.ameslab.gov/Projects/NetPIPE/

http://cmp.ameslab.gov/cmp/CMP_Theory/cmd/cmd.html

SCI cluster

• 64 dual-Athlon MP1900+ nodes
- 1.6 GHz
- 2 GB RAM

• Salable Coherent Interface (SCI)
- 8x8 grid
- Directional rings à wrapped

at the ends.
- Very fast line rate to avoid

congestion.
• Programming environment

- Scali MPI (ScaMPI)
- Intel and Gnu compilers
- PBS

SCI performance

InfiniBand can deliver 4500 -
6500 Mbps at a 7.5 us latency.

Atoll delivers 1890 Mbps with a
4.7 us latency.

SCI delivers 1840 Mbps with only
a 4.2 us latency.

Myrinet performance reaches
1820 Mbps with an 8 us latency.

Channel-bonded GigE offers
1800 Mbps for very large
messages.

Gigabit Ethernet delivers
900 Mbps with a 25-62 us latency.

10 GigE only delivers 2 Gbps
with a 75 us latency.

0

1000

2000

3000

4000

5000

6000

7000

100 10,000 1,000,000
Message size in Bytes

T
h

ro
u

g
h

p
u

t
in

 M
b

p
s

InfiniBand
w/o cache effects

SCI
4.2 us

GigE
62 us

InfiniBand RDMA
7.5 us latency

2xGigE
62 us

Atoll
4.7 us

Myrinet
8 us

ALCMD scaling on the SCI cluster

Scaling is reasonable as long as
the code is mapped to the 2D mesh.

Larger systems will scale even better.

There will be some loss going to
2 processors per node.

Have not tested directional nature of
the communication links.

Number of Processors

S
p

ee
d

u
p

100,000 atoms

Ideal Speedup

64164

64

16

ALCMD scaling
on the SCI cluster

1 proc / node

10,000 atoms

1000 atoms

32

32

8

Current projects
Overlapping pair-wise ping-pong tests.

Must consider synchronization if not using bi-directional communications.

Investigate other methods for testing the global network.

Evaluate the full range from simultaneous nearest neighbor communications to all-to-all.

Ethernet Switch

n0 n1 n2 n3

n0 n1 n2 n3 Line speed vs
end-point limited

TCP
workstations

PCs

Cray T3E
SGI systems

PVM

TCGMSG
runs on

ARMCI or MPI

MPI-2
1-sided

MPI_Put or MPI_Get

SHMEM
1-sided

puts and gets

NetPIPE

2-sided
protocols

1-sided
protocols

native
software
layers

MPI
MPICH LAM/MPI
MPI/Pro MP_Lite

GM
Myrinet cards

Infiniband
Mellanox VAPI

LAPI

SHMEM
& GPSHMEM

ARMCI

IBM SP

Clusters

Network Protocol Independent Performance Evaluator

ARMCI
TCP, GM, VIA,
Quadrics, LAPI

internal
systems

memcpy

+ Basic send/recv with options to guarantee pre-posting or use MPI_ANY_SOURCE.
+ Option to measure performance without cache effects.
+ One-sided communications using either Get or Put, with or without fence calls.
+ Measure performance or do an integrity test.

http://www.scl.ameslab.gov/Projects/NetPIPE/

0 100 200 300 400 500
0

100

200

300

400

500

ALCMD Scaling on the Cray T3E

Number of Processors

S
pe

ed
up

10 M

1 M

100 K

10 K

1 K

~75 MFlops / node
340 ==> 160 MB / sec max with a 20 us latency
3D toroid topology, but can't map to it

A 1,000 atom run for 20,000 time steps on 16 nodes takes 2.2 minutes
A 10,000 atom run for 20,000 time steps on 64 nodes takes 5.4 minutes
A 100,000 atom run for 20,000 time steps on 128 nodes takes 25 minutes
A 1,000,000 atom run for 20,000 time steps on 512 nodes takes 56 minutes

ALCMD – typical runs on the IBM SP

• 1,000 atoms 4 procs 20 hrs 10,000,000 steps
• 10,000 atoms 16 procs 6 hrs 1,000,000 steps
• 100,000 atoms 64 procs 15 hrs 1,000,000 steps
• 1,000,000 atoms 256 procs 4 hrs 100,000 steps
• 10,000,000 atoms 1024 procs 10 hrs 100,000 steps

Keep above 1000 atoms / processor.

Parallel efficiency kept above 75%.

110-150 MFlops / processor

